
Chapitre 9

Thermodynamique statistique

9.2 Potentiel chimique d’un soluté

Une solution idéale constituée de Ne molécules d’eau et de Ns molé-
cules de soluté est modélisée par un ensemble de Ne + Ns bôıtes. Parmi ces
bôıtes, Ne contiennent une molécule d’eau et Ns contiennent une molécule de
soluté. L’enthalpie H du système s’écrit,

H = Ne he +Ns hs

où he et hs sont les enthalpies par molécule d’eau et de soluté. L’énergie libre
de Gibbs (4.38) s’écrit,

G = µeNe + µsNs

1) Déterminer le nombre de configurations Ω avec Ne molécules d’eau et Ns
molécules de soluté.

2) Déterminer l’entropie de Gibbs (9.47) de la solution, qui est une entropie
de mélange, en utilisant l’approximation de Stirling (9.14),

lnNe! = Ne lnNe − Ne et lnNs! = Ns lnNs − Ns

3) Déterminer le potentiel chimique µs du soluté.

9.2 Solution

1) Le nombre total d’états microscopiques de la solution correspond au nombre
total (Ne +Ns)! de permutations de toutes les molécules d’eau et de soluté
sans les distinguer. Un état macroscopique est défini par le nombre Ne
de bôıtes qui contiennent chacune une molécule d’eau, et le nombre Ns de
bôıtes qui contiennent chacune une molécule de soluté. En permutant d’une
part les Ne molécules d’eau et d’autre part les Ns molécules de soluté, on ne
modifie pas l’état macroscopique car les molécules d’eau sont indiscernables
entre elles et les molécules de soluté sont aussi indiscernables entre elles. Par
conséquent, le nombre de configurations est obtenu en divisant le nombre
total (Ne +Ns)! de permutations de toutes les molécules par le nombre Ne!
de permutations des molécules d’eau d’une part et par le nombre Ns! de
permutations des molécules de soluté d’autre part,

Ω =
(Ne +Ns)!

Ne!Ns!
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2) L’entropie de Boltzmann (9.27) s’écrit,

S = kB ln

(
(Ne +Ns)!

Ne!Ns!

)
= kB ln (Ne +Ns)!− kB lnNe!− kB lnNs!

À l’aide de l’approximation de Stirling (9.14),

lnNe! = Ne lnNe − Ne et lnNs! = Ns lnNs − Ns

l’entropie de Boltzmann peut être mise sous la forme suivante,

S = kB (Ne +Ns) ln (Ne +Ns)− kB (Ne +Ns)

− kBNe lnNe + kBNe − kBNs lnNs + kBNs

et se réduit à,

S = − kBNe ln

(
Ne

Ne +Ns

)
− kBNs ln

(
Ns

Ne +Ns

)
Compte tenu de la concentration cs de soluté et de la concentration ce
d’eau,

cs =
Ns

Ne +Ns
et ce =

Ne
Ne +Ns

on montre que l’entropie de mélange de l’eau salée est l’entropie de
Gibbs (9.47),

S = − kBN
(
cs ln (cs) + ce ln (ce)

)
où N = Ne +Ns est le nombre total de molécules.

3) À l’aide de la définition (4.37), l’énergie libre de Gibbs s’écrit,

G = H − TS

= Ne he +Ns hs + kBTNe ln

(
Ne

Ne +Ns

)
+ kBTNs ln

(
Ns

Ne +Ns

)
Compte tenu de l’énergie libre de Gibbs (4.38),

G = µeNe + µsNs

le potentiel chimique du soluté (4.43) s’écrit,

µs =
∂G

∂Ns

et peut être exprimé comme,

µs = hs + kBTNe
∂

∂Ns

(
− ln (Ne +Ns)

)
+ kBT ln

(
Ns

Ne +Ns

)
+ kBTNs

∂

∂Ns
(lnNs) + kBTNs

∂

∂Ns

(
− ln (Ne +Ns)

)
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Il est remis en forme comme,

µs = hs − kBT
Ne

Ne +Ns
+ kBT ln

(
Ns

Ne +Ns

)
+ kBT − kBT

Ns
Ne +Ns

et se réduit alors à,

µs = hs + kBT ln

(
Ns

Ne +Ns

)
Compte tenu de la concentration cs de soluté, le potentiel chimique du
soluté devient,

µs = hs + kBT ln (cs)

Compte tenu de l’entropie de mélange (8.98), l’entropie par molécule de
soluté ss dans le mélange est donnée par,

ss = − kB ln (cs)

ce qui implique que le potentiel chimique du soluté peut être mis sous la
forme suivante (8.68),

µs = hs − T ss

comme il se doit.

9.9 Fluctuations de l’énergie interne

Afin de décrire les fluctuations de l’énergie interne, on considère un
système fermé, rigide et diatherme constitué de N particules indiscernables à
l’équilibre thermique avec un réservoir de chaleur à température T . Compte
tenu de la distribution de probabilité canonique (9.85) pour N particules
indiscernables, la valeur moyenne de l’énergie interne s’écrit

(1)
,

〈U 〉 =
∑
U

U pN (U) =
1

ZN

∑
U

U e− βU où ZN =
∑
U

e− βU

La valeur moyenne de l’énergie interne élevée au carré s’écrit,

〈U2 〉 =
∑
U

U2 pN (U) =
1

ZN

∑
U

U2 e− βU

Les fluctuations d’énergie interne sont caractérisées par la variance de l’énergie
interne définie comme la valeur moyenne du carré de la déviation de l’énergie
interne par rapport à sa valeur moyenne,

σ2
U =

〈(
U − 〈U 〉

)2 〉
(1)

En statistique, la valeur moyenne s’appelle l’espérance.
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La valeur moyenne de l’énergie interne par particule est définie comme,

〈u 〉 =

n∑
i=1

Ui p (Ui)

1) Montrer que la variance de l’énergie interne s’écrit,

σ2
U = 〈U2 〉 − 〈U 〉2

2) Montrer que la capacité thermique isochore CV est donnée par,

CV =
σ2
U

kB T 2

3) Montrer que les fluctuations de l’énergie interne s’écrivent,

σU
U

=

√
cV kB T 2

〈u 〉
1√
N

4) Pour un gaz parfait avec ν degrés de liberté, en déduire que les fluctuations
de l’énergie interne deviennent,

σU
U

=
1√
ν

2
N

5) Pour un solide indéformable, en déduire que les fluctuations de l’énergie
interne deviennent,

σU
U

=
1√
3N

6) Interpréter ce résultat dans la limite thermodynamique, lorsque le nombre
N de particules devient gigantesque.

9.9 Solution

1) La variance de l’énergie interne peut être développée par distributivité
comme,

σ2
U =

〈(
U − 〈U 〉

)2 〉
=
〈
U2 − 2 〈U 〉U + 〈U 〉2

〉
= 〈U2 〉 − 2 〈U 〉〈U 〉+ 〈U 〉2 = 〈U2 〉 − 〈U 〉2

2) La capacité thermique isochore s’écrit,

CV =
∂ 〈U 〉
∂T

∣∣∣∣
V

=
∂

∂T

(
1

ZN

∑
U

U e− βU

)
et se développe comme,

CV =
∂

∂T

(
1

ZN

)∑
U

U e− βU +
1

ZN

∑
U

U
∂ e− βU

∂T



Fluctuations de l’énergie interne 5

Compte tenu de la fonction de partition canonique (9.86) pour N particules
indiscernables,

∂

∂T

(
1

ZN

)
= − 1

Z2
N

∂ZN
∂T

= − 1

Z2
N

(∑
U

∂ e− βU

∂T

)

Ainsi, la capacité thermique isochore devient,

CV = − 1

Z2
N

(∑
U

∂ e− βU

∂T

)(∑
U

U e− βU

)
+

1

ZN

∑
U

U
∂ e− βU

∂T

À l’aide de β = 1/kB T ,

∂ e− βU

∂T
=
∂ e− βU

∂β

∂β

∂T
= −U e− βU ∂

∂T

(
1

kB T

)
=
U e− βU

kB T 2

la capacité thermique isochore prend la forme suivante,

CV = − 1

kB T 2

(
1

ZN

∑
U

U e− βU

)2

+
1

kB T 2

(
1

ZN

∑
U

U2 e− βU

)

et se réduit à,

CV =
1

kB T 2

(
〈U2 〉 − 〈U 〉2

)
=

σ2
U

kB T 2

3) Compte tenu du résultat précédent, les fluctuations de l’énergie interne
s’écrivent,

σU
U

=

√
CV kB T 2

U

L’énergie interne (9.63) est le produit du nombre de particules et de la
valeur moyenne de l’énergie interne par particule comme,

U = N

n∑
i=1

Ui p (Ui) = N 〈u 〉

et la capacité thermique isochore est le produit du nombre de particules et
de la capacité thermique isochore par particule,

CV = N cV

Ainsi, les fluctuations de l’énergie interne deviennent,

σU
U

=

√
cV kB T 2

〈u 〉
1√
N
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4) Pour un gaz parfait, la capacité thermique isochore par particule (9.183)
est un multiple de la constante de Boltzmann,

cV =
CV
N

=
ν

2
kB

et l’énergie interne moyenne par particule (9.180) s’écrit,

〈u 〉 =
U

N
=
ν

2
kB T

Ainsi, les fluctuations de l’énergie interne deviennent,

σU
U

=
1√
ν

2
N

5) Pour un solide indéformable, la capacité thermique par particule (9.188)
est un multiple de la constante de Boltzmann,

cV =
C

N
= 3 kB

et l’énergie interne moyenne par particule (9.184) s’écrit,

〈u 〉 =
U

N
= 3 kBT

Ainsi, les fluctuations de l’énergie interne deviennent,

σU
U

=
1√
3N

6) Dans la limite thermodynamique, lorsque le nombre N de molécules d’un
gaz parfait ou d’un solide indéformable devient gigantesque, les fluctuations
de l’énergie interne tendent vers zéro. L’énergie interne d’un gaz parfait ou
d’un solide indéformable est alors égale à sa valeur moyenne obtenue dans
une approche statistique.

9.13 Pression de radiation

Un gaz isotrope et homogène, constitué de N photons qui sont des
« particules » de lumière, est enfermé dans une bôıte cubique d’arrête L. On
suppose que les parois sont des miroirs parfaitement réfléchissants. Par consé-
quent, les photons effectuent des collisions élastiques avec les parois de la bôıte
et ont un mouvement rectiligne uniforme entre deux collisions. On admet ici
que l’énergie cinétique E d’un photon est lié à sa quantité de mouvement p par
la vitesse de propagation de la lumière dans le vide,

E = p c
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1) Déterminer la pression de radiation pr exercée par les photons sur les parois
de la bôıte en fonction de la densité volumique d’énergie interne u.

2) À l’aide de la relation d’Euler et de la relation de Gibbs-Duhem, montrer
que l’énergie interne s’écrit comme,

u = a T 4

où a = 7.57 · 10−16Jm−3K−4 est une constante.

9.13 Solution

vx

t = 0 t = Dt

x
LL

xO O

Fig. 9.1 En t = 0, le photon a une quantité de mouvement px. En t = ∆t, le photon a une
quantité de mouvement − px.

1) On considère un photon qui a un mouvement rectiligne uniforme à la vitesse
de la lumière c selon l’axe horizontal x. Initialement, le photon est en x = 0
avec une quantité de mouvement px. Au temps t = ∆t/2, une collision
élastique a lieu contre la paroi de droite en x = L. Au temps t = ∆t, le
photon est de nouveau en x = 0 avec une quantité de mouvement égale
et opposée − px. D’après la 3e loi de Newton, la force Fx exercée par la
particule sur la paroi est égale est opposée à la force −Fx exercée par la
paroi de droite sur le photon. Un aller-retour du photon selon l’axe x a lieu
durant un intervalle de temps,

∆t =
2L

c

Durant cet intervalle de temps, la variation de quantité de mouvement du
photon selon l’axe x, qui est due à la collision élastique avec la paroi de
droite, s’écrit,

∆px = − 2px

Durant un aller-retour du photon, l’interaction entre le photon et la paroi
de droite satisfait la 2e loi de Newton,

−Fx =
∆px
∆t

= − pxc

L

La force moyenne exercée sur la paroi de droite par l’ensemble de tous les
photons est,

〈F 〉 = N 〈Fx 〉 =
N

L
c 〈 px 〉
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Comme le gaz est isotrope et homogène, la quantité de mouvement moyenne
est la même dans les trois directions de l’espace,

〈 p 〉 = 〈 px 〉+ 〈 py 〉+ 〈 pz 〉 = 3 〈 px 〉

La force moyenne exercée sur la paroi de droite par l’ensemble de tous les
photons est alors,

〈F 〉 = N 〈Fx 〉 =
N

3L
c 〈 p 〉 =

N

3L
〈E 〉

La pression de radiation exercée sur la paroi de droite de surface L2 par
l’ensemble de tous les photons est,

pr =
〈F 〉
L2

=
N

3L3
〈E 〉 =

N

3V
〈E 〉

où V = L3. La densité d’énergie interne u du gaz de N photons d’énergie
moyenne 〈E 〉 s’écrit,

u =
U

V
=
N

V
〈E 〉

Ainsi, la pression de radiation pr se réduit à,

pr =
1

3
u

2) La relation de Gibbs-Duhem (4.9) pour le système s’écrit,

S dT − V dpr = 0

L’entropie S du système tirée de la relation d’Euler (4.7) est donnée par,

S =
U + pr V

T

En substituant cette relation dans la précédente, on obtient,

U + pr V

T
dT − V dpr = 0

Cette dernière relation divisée par le volume V du système devient,

u+ pr
T

dT − dpr = 0

Compte tenu de la pression de radiation,

pr =
1

3
u et dpr =

1

3
du

la relation précédente divisée par u s’écrit,

4

3

dT

T
− 1

3

du

u
= 0
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L’intégrale de cette relation de u (T0) à u (T ) s’écrit,∫ u(T )

u(T0)

du′

u′
= 4

∫ T

T0

dT ′

T ′

La solution de cette intégrale est,

ln

(
u (T )

u (T0)

)
= 4 ln

(
T

T0

)
= ln

(
T 4

T 4
0

)
Ainsi, par exponentiation,

u (T )

u (T0)
=
T 4

T 4
0

Par conséquent, on obtient la densité d’énergie interne,

u (T ) = a T 4

qui est liée à la loi de Stefan-Boltzmann qui donne l’exitance du rayon-
nement,

M (T ) = σ T 4

La constante a s’écrit en termes de la constante de Stefan-Boltzmann σ =
5,710−8 W m−2 K−4 comme,

σ =
1

4
a c

9.14 Système à deux niveaux d’énergie

Un système fermé de N particules à l’équilibre thermique avec un
réservoir de température T est tel que l’énergie interne des particules peut
prendre deux valeurs distinctes,

U1 = U0 et U2 = U0 + ∆U où ∆U > 0

1) Déterminer l’énergie interne totale U .

2) Déterminer la capacité thermique isochore CV .

3) Déterminer l’entropie de Gibbs S comme fonction de la probabilité p (U2).

4) Déterminer la température T comme fonction de la probabilité p (U2).

5) Déterminer le paramètre β comme fonction de la probabilité p (U2).

9.14 Solution

1) La fonction de partition canonique (9.60) pour une particule dans un sys-
tème avec deux niveaux d’énergie interne,

U1 = U0 et U2 = U0 + ∆U



10 Thermodynamique statistique

s’écrit,
Z = e− βU1 + e− βU2 = e− βU0

(
1 + e− β∆U

)
La probabilité qu’une particule ait une énergie interne U1 est donnée par
la distribution canonique (9.61),

p (U1) =
e− βU1

Z
=

e− βU0

e− βU0 (1 + e− β∆U )
=

1

1 + e− β∆U
=

eβ∆U

eβ∆U + 1

de même que la probabilité qu’une particule ait une énergie interne U2,

p (U2) =
e− βU2

Z
=

e− βU0 e− β∆U

e− βU0 (1 + e− β∆U )
=

e− β∆U

1 + e− β∆U
=

1

eβ∆U + 1

Compte tenu de la relation (9.43), les nombres de particules N1 et N2

d’énergie interne U1 et U2 s’écrivent,

N1 = N p (U1) =
N eβ∆U

eβ∆U + 1
et N2 = N p (U2) =

N

eβ∆U + 1

L’énergie interne (9.34) est donnée par,

U = N1 U1 +N2 U2

et s’écrit explicitement comme,

U =
N eβ∆U

eβ∆U + 1
U0 +

N

eβ∆U + 1
(U0 + ∆U)

Finalement, elle se réduit à,

U = N

(
U0 +

∆U

eβ∆U + 1

)
2) La capacité thermique isochore (5.14) est donnée par,

CV =
∂U

∂T

∣∣∣∣
V

= N∆U
∂

∂T

(
1

eβ∆U + 1

)
= −N∆U

∂ eβ∆U

∂T

(eβ∆U + 1)
2

et peut être mise sous la forme suivante,

CV = NkB (β∆U)
2 eβ∆U

(eβ∆U + 1)
2

Compte tenu de l’expression (9.67) de β, elle peut être exprimée en termes
de la température (fig. 9.2),

CV = NkB

(
∆U

kBT

)2
e

∆U
kBT(

e
∆U
kBT + 1

)2

Le pic de la capacité thermique isochore est appelée l’anomalie de
Schottky .
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Fig. 9.2 La capacité thermique isochore normalisée CV /NkB comme fonction de la tempé-
rature kBT/∆U normalisée.

3) L’entropie de Gibbs (9.47) s’écrit,

S = −NkB
(
p (U1) ln p (U1) + p (U2) ln p (U2)

)
Compte tenu de la relation de normalisation des probabilités (9.46),

p (U1) + p (U2) = 1

l’entropie peut alors être mise sous la forme suivante (fig. 9.3),

S = −NkB
((

1− p (U2)
)

ln
(

1− p (U2)
)

+ p (U2) ln p (U2)
)

0.0 1.00.5

Fig. 9.3 L’entropie normalisée S/NkB comme fonction de la probabilité p (U2).
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4) La température (2.16) s’écrit,

T =
∂U

∂S
=

∂U

∂p (U2)

∂p (U2)

∂S
=

∂U

∂p (U2)

(
∂S

∂p (U2)

)−1

L’énergie interne est donnée par,

U = N

(
U0 +

∆U

eβ∆U + 1

)
= N U0 +N ∆U p (U2)

La dérivée partielle de l’énergie interne s’écrit,

∂U

∂p (U2)
= N∆U

et la dérivée partielle de l’entropie est donnée par,

∂S

∂p (U2)
= NkB

(
ln
(

1− p (U2)
)

+ 1− ln p (U2)− 1
)

et s’écrit aussi comme,

∂S

∂p (U2)
= NkB ln

(
1− p (U2)

p (U2)

)
Finalement, la température peut s’écrire comme (fig. 9.4),

T =
∆U

kB

1

ln

(
1− p (U2)

p (U2)

)

0.2 0.4 0.6 0.8 1.0

-10

-5

5

10

Fig. 9.4 La température normalisée kBT/∆U comme fonction de la probabilité p (U2).

La température T du réservoir est positive si p (U2) < 1/2, elle diverge si
p (U2) = 1/2, et elle est négative si p (U2) > 1/2. La divergence est due
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au fait que l’entropie atteint un maximum lorsque la particule a la même
probabilité d’avoir une énergie interne U1 ou U2 (fig. 9.4). La température
négative est due au fait que le système s’ordonne lorsque son énergie interne
U augmente. Les températures négatives se manifestent en particulier dans
des systèmes avec un nombre fini de niveaux d’énergie.

5) Compte tenu de la définition (9.67), le paramètre β s’écrit (fig. 9.5),

β =
1

kBT
=

1

∆U
ln

(
1− p (U2)

p (U2)

)

0.2 0.4 0.6 0.8 1.0

-10

-5

5

10

Fig. 9.5 Le paramètre thermique normalisé β∆U comme fonction de la probabilité p (U2).

Le paramètre β ne diverge pas si p (U2) = 1/2. C’est la raison pour laquelle
ce paramètre joue un rôle plus fondamental en physique théorique que la
température T .


