CHAPITRE 9

Thermodynamique statistique

9.2 Potentiel chimique d’un soluté

YoY% Une solution idéale constituée de N, molécules d’eau et de N, molé-
cules de soluté est modélisée par un ensemble de N, + N, boites. Parmi ces
boites, N, contiennent une molécule d’eau et N4 contiennent une molécule de
soluté. L’enthalpie H du systeme s’écrit,

H=N,h.+ N5 hs

ou h. et h, sont les enthalpies par molécule d’eau et de soluté. L’énergie libre
de Gibbs (4.38) s’écrit,
G= He Ne + s Ns

1) Déterminer le nombre de configurations © avec N, molécules d’eau et N
molécules de soluté.

2) Déterminer l'entropie de Gibbs (9.47) de la solution, qui est une entropie
de mélange, en utilisant 'approximation de Stirling (9.14),

InN.,)!=N.,InN, — N, et In Ny! = NgIn Ng — N,

3) Déterminer le potentiel chimique ps du soluté.

Solution

1) Le nombre total d’états microscopiques de la solution correspond au nombre
total (N, + N;)! de permutations de toutes les molécules d’eau et de soluté
sans les distinguer. Un état macroscopique est défini par le nombre N,
de boites qui contiennent chacune une molécule d’eau, et le nombre N de
boites qui contiennent chacune une molécule de soluté. En permutant d’une
part les N, molécules d’eau et d’autre part les N, molécules de soluté, on ne
modifie pas I’état macroscopique car les molécules d’eau sont indiscernables
entre elles et les molécules de soluté sont aussi indiscernables entre elles. Par
conséquent, le nombre de configurations est obtenu en divisant le nombre
total (N, + Ns)! de permutations de toutes les molécules par le nombre N,!
de permutations des molécules d’eau d’une part et par le nombre Ny! de
permutations des molécules de soluté d’autre part,

(Ne + N;)!

2= NN,
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2) L’entropie de Boltzmann (9.27) s’écrit,

(Ne + Ny)!

S:th’l( Ne!NS!

) :kBln(Ne+Ns)!— kiBh’lNe!— kiBh'le!

A Taide de I'approximation de Stirling (9.14),
InN.,)!=N.InN, — N, et In Ny! = NgIn Ny — N,
I’entropie de Boltzmann peut étre mise sous la forme suivante,

S = kp (No + No)In (N, + N,) — kg (N + N,)
— kpNeIn N + kpNe — kpNsIn Ny + kp N,

et se réduit a,

N, N
S=— kBNe In (M) - kBNS In (M)

Compte tenu de la concentration ¢, de soluté et de la concentration c,
d’eau,
Ny o N

N.+N, © *T Nt N,
on montre que l'entropie de mélange de l'eau salée est ’entropie de
Gibbs (9.47),

Cs

S = kBN<cs In(cs) + ceIn (ce))

ou N = N, + N, est le nombre total de molécules.
3) A T’aide de la définition (4.37), Iénergie libre de Gibbs s’écrit,

G=H-TS

N. Ny
— Noho+ Nohy+ kpTNodn [ ——¢ ) + kTN In [ —2s
+ t k5 n(Ne+Ns>+ B n(Ne+NS>

Compte tenu de 1’énergie libre de Gibbs (4.38),
G = e N + Hs Ny

le potentiel chimique du soluté (4.43) s’écrit,

0@
~ ON,

Hs

et peut étre exprimé comme,

) N,
fts = hs + kgTN, E)—NS(— In (N, + NS)) +kpTln <N+N)

B B
+ kTN, 5o () + ks TN, oo ( ~ In(N, + NS))
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Il est remis en forme comme,

N, N,
. =hy — kpT ————— Thn| ——
s =hs — kp N.+ N, + kT 1n (Ne —I—NS)
N;
kT — kpT ————
+ kB B N, + N,

et se réduit alors a,
Ny
s=he+kpgTlh| —2—
1 + kB H(Ne+Ns>

Compte tenu de la concentration cs; de soluté, le potentiel chimique du
soluté devient,
ts = hs + kT In (cs)
Compte tenu de l’entropie de mélange (8.98), 'entropie par molécule de
soluté s; dans le mélange est donnée par,
ss = —kpln(cs)

ce qui implique que le potentiel chimique du soluté peut étre mis sous la
forme suivante (8.68),
s =hs — T ss

comme il se doit.

9.9 Fluctuations de I’énergie interne

Yo% Afin de décrire les fluctuations de I’énergie interne, on considére un
systeme fermé, rigide et diatherme constitué de IV particules indiscernables a
I’équilibre thermique avec un réservoir de chaleur a température T. Compte
tenu de la distribution de probabilité canonique (9.85) pour N particules
indiscernables, la valeur moyenne de Iénergie interne s’écrit'”,

<U>:ZUpN(U):iZUe*BU o Zy=Y e
U ZN G U

La valeur moyenne de ’énergie interne élevée au carré s’écrit,
2 2 1 2 - BU
(U}zg U pn (U) = E Uce
ZN
U U
Les fluctuations d’énergie interne sont caractérisées par la variance de I’énergie

interne définie comme la valeur moyenne du carré de la déviation de 1’énergie
interne par rapport a sa valeur moyenne,

o= (o~ w))

En statistique, la valeur moyenne s’appelle ’espérance.

(1)
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La valeur moyenne de 1’énergie interne par particule est définie comme,

6)

Montrer que la variance de ’énergie interne s’écrit,
2 2 2
op =(U") = (U)
Montrer que la capacité thermique isochore Cy est donnée par,
2

_ 9y
Cv = kp T2

Montrer que les fluctuations de 1’énergie interne s’écrivent,

oy o vV ey k B T2 1

U (u) VN
Pour un gaz parfait avec v degrés de liberté, en déduire que les fluctuations
de I’énergie interne deviennent,

—_

ou

U

=
=

Pour un solide indéformable, en déduire que les fluctuations de l'énergie

interne deviennent,
oy 1

U V3N
Interpréter ce résultat dans la limite thermodynamique, lorsque le nombre
N de particules devient gigantesque.

Solution

1)

2)

La variance de 1’énergie interne peut étre développée par distributivité
comme,

ot = ((U- <U>)2>:<U2— 2(U)U+(U)?)
=(U*) = 2(UNU)+ (U)* =(U*) - (U)?

La capacité thermique isochore s’écrit,

0 1
—— =Y ve

et se développe comme,

de PU

o (1 1
A -BU 4
Cy a:r( )zU:Ue +ZN2U:U o7

N
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Compte tenu de la fonction de partition canonique (9.86) pour N particules
indiscernables,

O (LN__19Zv_ 1 e Y
or \zy) 2% o1 ~  Z%Z \4& T

Ainsi, la capacité thermique isochore devient,

1 de BV 1 de PU
Cy =—— _— Ue BU — U
' ZI2V<U or )(zU: ’ >+ZN2U: or

A laide de B = 1/kp T,

de PV e PV aﬁ——Ue_BU(?( 1 )ZUe_'BU

or 93 oT oT \kgT kp T2

la capacité thermique isochore prend la forme suivante,

2
1 1 1 1
Cv=——s | Y Ue P — N e
Y kBT2<ZN2U: ‘ )*ka(ZNzU: ‘

et se réduit a,

_ 1 2\ 2\ _ U%}
CV_kBT2(<U> <U>)_kBT2

3) Compte tenu du résultat précédent, les fluctuations de 1'énergie interne
s’écrivent,

Gl o \/C'{/I{?BT2

U U

L’énergie interne (9.63) est le produit du nombre de particules et de la
valeur moyenne de 1’énergie interne par particule comme,

U:NZ Uip(U;) = N (u)

et la capacité thermique isochore est le produit du nombre de particules et
de la capacité thermique isochore par particule,

CV =N Cy
Ainsi, les fluctuations de 1’énergie interne deviennent,

oy Vv ey kBT2 1

U (u) N
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4) Pour un gaz parfait, la capacité thermique isochore par particule (9.183)
est un multiple de la constante de Boltzmann,
- CV 14

c
VTN T2
et ’énergie interne moyenne par particule (9.180) s’écrit,

U v

Ainsi, les fluctuations de I'énergie interne deviennent,

5) Pour un solide indéformable, la capacité thermique par particule (9.188)
est un multiple de la constante de Boltzmann,
C

CV:N:?)]CB

et Iénergie interne moyenne par particule (9.184) s’écrit,

U
= — = l
(u) N 3kp

Ainsi, les fluctuations de I’énergie interne deviennent,

O'U_ 1

U V3N

6) Dans la limite thermodynamique, lorsque le nombre N de molécules d’un
gaz parfait ou d’un solide indéformable devient gigantesque, les fluctuations
de I’énergie interne tendent vers zéro. L’énergie interne d’'un gaz parfait ou
d’un solide indéformable est alors égale & sa valeur moyenne obtenue dans
une approche statistique.

9.13 Pression de radiation

Yo% Un gaz isotrope et homogene, constitué de N photons qui sont des
« particules » de lumiere, est enfermé dans une boite cubique d’arréte L. On
suppose que les parois sont des miroirs parfaitement réfléchissants. Par consé-
quent, les photons effectuent des collisions élastiques avec les parois de la boite
et ont un mouvement rectiligne uniforme entre deux collisions. On admet ici
que I’énergie cinétique E d’un photon est lié a sa quantité de mouvement p par
la vitesse de propagation de la lumiere dans le vide,

E=pc
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1) Déterminer la pression de radiation p, exercée par les photons sur les parois
de la boite en fonction de la densité volumique d’énergie interne u.

2) A Taide de la relation d’Euler et de la relation de Gibbs-Duhem, montrer
que ’énergie interne s’écrit comme,

u=aT*
ot a =7.57-10"Jm3K™* est une constante.
Solution

t=20 t= At

o—— — — O -9 — — — — O
Pz — Pz

O > I (oX > T

Fig. 9.1 En t = 0, le photon a une quantité de mouvement p,. En ¢t = At, le photon a une
quantité de mouvement — py.

1) On considére un photon qui a un mouvement rectiligne uniforme a la vitesse
de la lumiere c¢ selon ’axe horizontal x. Initialement, le photon est en z = 0
avec une quantité de mouvement p,. Au temps t = At/2, une collision
élastique a lieu contre la paroi de droite en x = L. Au temps t = At, le
photon est de nouveau en x = 0 avec une quantité de mouvement égale
et opposée — p,.. D’apres la 3° loi de Newton, la force F, exercée par la
particule sur la paroi est égale est opposée a la force — F,, exercée par la
paroi de droite sur le photon. Un aller-retour du photon selon 'axe x a lieu
durant un intervalle de temps,

)
_C

At

Durant cet intervalle de temps, la variation de quantité de mouvement du
photon selon I'axe x, qui est due a la collision élastique avec la paroi de
droite, s’écrit,

Ap, = —2p,

Durant un aller-retour du photon, 'interaction entre le photon et la paroi
de droite satisfait la 2° loi de Newton,

_Aps _ pac

At L
La force moyenne exercée sur la paroi de droite par ’ensemble de tous les
photons est,

_Fx

(F)=N(F)="Telp)
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Comme le gaz est isotrope et homogene, la quantité de mouvement moyenne
est la méme dans les trois directions de I’espace,

<p>:<px>+<py>+<pz>:3<px>

La force moyenne exercée sur la paroi de droite par ’ensemble de tous les
photons est alors,

N N

<F>=N<F$>=370<p>=37

(E)

La pression de radiation exercée sur la paroi de droite de surface L? par
I’ensemble de tous les photons est,

_(F)_ N N

="l = oo (B)= o (E)

ou V = L3. La densité d’énergie interne u du gaz de N photons d’énergie
moyenne { E') s’écrit,
U N

=—=—=(F
Ainsi, la pression de radiation p, se réduit a,
1
Dr = g u

La relation de Gibbs-Duhem (4.9) pour le systéme s’écrit,
SdT'— Vdp, =0
L’entropie S du systéme tirée de la relation d’Euler (4.7) est donnée par,

_U+pV

o T

En substituant cette relation dans la précédente, on obtient,

U+p.V

T dl'— Vdp, =0
Cette derniere relation divisée par le volume V' du systeme devient,

U+ pr
T

dT — dp, =0

Compte tenu de la pression de radiation,

1 1
przgu et dprzgdu

la relation précédente divisée par u s’écrit,

-2z -0
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L’intégrale de cette relation de u (Tp) & u (T') s’écrit,

/u(T) du’ T dT’
w _ /
U(T[)) ul T() T/

La solution de cette intégrale est,

(i) - () ()

Ainsi, par exponentiation,

w() 1

u(Ty) T

Par conséquent, on obtient la densité d’énergie interne,

uw(T)=aT*

qui est liée a la lot de Stefan-Boltzmann qui donne 'exitance du rayon-

nement,
M(T)=0oT*

La constante a s’écrit en termes de la constante de Stefan-Boltzmann o =
571078 Wm 2K~ comme,

ac

=

9.14 Systeme a deux niveaux d’énergie

Y“okrsr  Un systeme fermé de N particules & 1’équilibre thermique avec un
réservoir de température T est tel que I’énergie interne des particules peut
prendre deux valeurs distinctes,

U, =U, et Uy =Uy + AU ou AU >0

1
2

) Déterminer ’énergie interne totale U.
)

3) Déterminer I'entropie de Gibbs S comme fonction de la probabilité p (Uz).
)
)

Déterminer la capacité thermique isochore CYy, .

4) Déterminer la température 7' comme fonction de la probabilité p (Us).

5) Déterminer le parametre S comme fonction de la probabilité p (Us).

Solution

1) La fonction de partition canonique (9.60) pour une particule dans un sys-
teme avec deux niveaux d’énergie interne,

Ui =0y et Uy =Uy+ AU
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s’écrit,

7 =e PVt 4 o= PU2 — o= BlUo (1 + e—ﬁAU>
La probabilité qu'une particule ait une énergie interne U; est donnée par
la distribution canonique (9.61),

e~ PUL e~ Blo 1 eBAU

p(Uy) = 7 :efﬁUO(l_;r_efﬁAU):1+675AU265AU+1

de méme que la probabilité qu'une particule ait une énergie interne Us,
e~ BUz e— BUo o= BAU o— BAU 1

P2 = =7 = R (14 ¢ PA0) ~ T4 ¢ PAU ~ fBU 11

Compte tenu de la relation (9.43), les nombres de particules N; et Ny
d’énergie interne U; et Uy s’écrivent,

N ePAU N
Nl:Np(Ul):eﬁTH et NQZNp(UQ):m

L’énergie interne (9.34) est donnée par,
U=NU+ NyUs
et s’écrit explicitement comme,

_ NePAU U N
CePAU 11 0+€’BAU+1

(U + AU)

Finalement, elle se réduit a,

AU
U:N<U0+e[3AU+1)

La capacité thermique isochore (5.14) est donnée par,

aeBAU
oUu 0 1 oT
Cy=—| =NAU —=|—— ) =—-NAU ———
V= oar|, oT (eﬁAU + 1) (ePAU 4 1)?
et peut étre mise sous la forme suivante,
,  efAU

Cy = Nk AU) —
1% B(/B ) (eBAU+1)2

Compte tenu de lexpression (9.67) de §, elle peut étre exprimée en termes
de la température (fig. 9.2),

AUN?  efor
umta (2
B (efar 1)

Le pic de la capacité thermique isochore est appelée 1’anomalie de
Schottky.
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0.3F

N o kBT

0.0 0.5 1.0 1.5 20 AU

Fig. 9.2 La capacité thermique isochore normalisée Cy /Nkp comme fonction de la tempé-
rature kg7 /AU normalisée.

3) L’entropie de Gibbs (9.47) s’écrit,
S =— Nkg (p(Ul) np (1) + p (Us) lnp(U2))
Compte tenu de la relation de normalisation des probabilités (9.46),

p(U1) +p(Us) =1

Pentropie peut alors étre mise sous la forme suivante (fig. 9.3),

S = — Nkg ((1 _ p(UQ)) In (1 - p(UQ)) +p(Us) lnp(Ug))

)} — — — — — =

- p(Us)

0.0 0.5 1.0

Fig. 9.3 L’entropie normalisée S/Nkp comme fonction de la probabilité p (Uz).
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4) La température (2.16) s’écrit,

oU U  ap(Us)  OU ( oS )1
)

T = — = =
s Op(Uz) 0S8 dp (U2) \9p (U2

L’énergie interne est donnée par,

AU

- N /Y
U <U0+@BAU+1

) — NUo+ N AU p(Us)

La dérivée partielle de 1’énergie interne s’écrit,

ou
= NAU
ap (U-)
et la dérivée partielle de I’entropie est donnée par,
oS
50 = Vb (n (1= p(@2) +1- mp@a) - 1)

et s’écrit aussi comme,

95 _ Nkgh <1 — p(Uz))

ap (V) p(U2)
Finalement, la température peut s’écrire comme (fig. 9.4),
AU 1
T =

kT
AU

A
10t

t
T

(U-)

-5k

-10F

|
[
[
[
n 1 I 1 1 1 |- P
0.2 04 | 06 08— 10 ©
|
|
|
I

Fig. 9.4 La température normalisée kT /AU comme fonction de la probabilité p (Usz).

La température T du réservoir est positive si p (Uz) < 1/2, elle diverge si
p(Usz) = 1/2, et elle est négative si p(Us) > 1/2. La divergence est due
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au fait que entropie atteint un maximum lorsque la particule a la méme
probabilité d’avoir une énergie interne U; ou Us (fig. 9.4). La température
négative est due au fait que le systeme s’ordonne lorsque son énergie interne
U augmente. Les températures négatives se manifestent en particulier dans
des systemes avec un nombre fini de niveaux d’énergie.

5) Compte tenu de la définition (9.67), le parametre § s’écrit (fig. 9.5),

g 1 1 ln(lp(Ug))

" ksT AU »(U3)
BAU
A
10F
5
' ' ' - p(U2)
0.2 0.4 0.6 5 1.0
5
-10+

Fig. 9.5 Le parametre thermique normalisé BAU comme fonction de la probabilité p (Uz).

Le parametre 8 ne diverge pas si p (Us) = 1/2. Cest la raison pour laquelle
ce parametre joue un role plus fondamental en physique théorique que la
température T



